Metamath Proof Explorer


Theorem gpgedgvtx1lem

Description: Lemma for gpgedgvtx1 . (Contributed by AV, 1-Sep-2025) (Proof shortened by AV, 8-Sep-2025)

Ref Expression
Hypotheses ceilhalfelfzo1.j
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
gpgedgvtx1lem.i
|- I = ( 0 ..^ N )
Assertion gpgedgvtx1lem
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. J ) -> X e. I )

Proof

Step Hyp Ref Expression
1 ceilhalfelfzo1.j
 |-  J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
2 gpgedgvtx1lem.i
 |-  I = ( 0 ..^ N )
3 fzo0ss1
 |-  ( 1 ..^ N ) C_ ( 0 ..^ N )
4 3 a1i
 |-  ( N e. ( ZZ>= ` 3 ) -> ( 1 ..^ N ) C_ ( 0 ..^ N ) )
5 4 2 sseqtrrdi
 |-  ( N e. ( ZZ>= ` 3 ) -> ( 1 ..^ N ) C_ I )
6 5 adantr
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ X e. J ) -> ( 1 ..^ N ) C_ I )
7 eluzge3nn
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN )
8 1 ceilhalfelfzo1
 |-  ( N e. NN -> ( X e. J -> X e. ( 1 ..^ N ) ) )
9 7 8 syl
 |-  ( N e. ( ZZ>= ` 3 ) -> ( X e. J -> X e. ( 1 ..^ N ) ) )
10 9 imp
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ X e. J ) -> X e. ( 1 ..^ N ) )
11 6 10 sseldd
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ X e. J ) -> X e. I )