Step |
Hyp |
Ref |
Expression |
1 |
|
ceilhalfelfzo1.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgedgvtx1lem.i |
|- I = ( 0 ..^ N ) |
3 |
|
fzo0ss1 |
|- ( 1 ..^ N ) C_ ( 0 ..^ N ) |
4 |
3
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> ( 1 ..^ N ) C_ ( 0 ..^ N ) ) |
5 |
4 2
|
sseqtrrdi |
|- ( N e. ( ZZ>= ` 3 ) -> ( 1 ..^ N ) C_ I ) |
6 |
5
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. J ) -> ( 1 ..^ N ) C_ I ) |
7 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
8 |
1
|
ceilhalfelfzo1 |
|- ( N e. NN -> ( X e. J -> X e. ( 1 ..^ N ) ) ) |
9 |
7 8
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( X e. J -> X e. ( 1 ..^ N ) ) ) |
10 |
9
|
imp |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. J ) -> X e. ( 1 ..^ N ) ) |
11 |
6 10
|
sseldd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. J ) -> X e. I ) |