Metamath Proof Explorer


Theorem gpgedgvtx1lem

Description: Lemma for gpgedgvtx1 . (Contributed by AV, 1-Sep-2025) (Proof shortened by AV, 8-Sep-2025)

Ref Expression
Hypotheses ceilhalfelfzo1.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgedgvtx1lem.i 𝐼 = ( 0 ..^ 𝑁 )
Assertion gpgedgvtx1lem ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋𝐽 ) → 𝑋𝐼 )

Proof

Step Hyp Ref Expression
1 ceilhalfelfzo1.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgedgvtx1lem.i 𝐼 = ( 0 ..^ 𝑁 )
3 fzo0ss1 ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 )
4 3 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) )
5 4 2 sseqtrrdi ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐼 )
6 5 adantr ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋𝐽 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐼 )
7 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
8 1 ceilhalfelfzo1 ( 𝑁 ∈ ℕ → ( 𝑋𝐽𝑋 ∈ ( 1 ..^ 𝑁 ) ) )
9 7 8 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑋𝐽𝑋 ∈ ( 1 ..^ 𝑁 ) ) )
10 9 imp ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋𝐽 ) → 𝑋 ∈ ( 1 ..^ 𝑁 ) )
11 6 10 sseldd ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋𝐽 ) → 𝑋𝐼 )