Step |
Hyp |
Ref |
Expression |
1 |
|
ceilhalfelfzo1.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgedgvtx1lem.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
3 |
|
fzo0ss1 |
⊢ ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) |
4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) ) |
5 |
4 2
|
sseqtrrdi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐼 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑋 ∈ 𝐽 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐼 ) |
7 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
8 |
1
|
ceilhalfelfzo1 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑋 ∈ 𝐽 → 𝑋 ∈ ( 1 ..^ 𝑁 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑋 ∈ 𝐽 → 𝑋 ∈ ( 1 ..^ 𝑁 ) ) ) |
10 |
9
|
imp |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑋 ∈ 𝐽 ) → 𝑋 ∈ ( 1 ..^ 𝑁 ) ) |
11 |
6 10
|
sseldd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑋 ∈ 𝐽 ) → 𝑋 ∈ 𝐼 ) |