Metamath Proof Explorer


Theorem ceilhalfelfzo1

Description: A positive integer less than (the ceiling of) half of another integer is in the half-open range of positive integers up to the other integer. (Contributed by AV, 7-Sep-2025)

Ref Expression
Hypothesis ceilhalfelfzo1.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
Assertion ceilhalfelfzo1 ( 𝑁 ∈ ℕ → ( 𝐾𝐽𝐾 ∈ ( 1 ..^ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 ceilhalfelfzo1.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 1 eleq2i ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
3 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
4 3 rehalfcld ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ )
5 4 ceilcld ( 𝑁 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ )
6 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
7 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
8 2nn 2 ∈ ℕ
9 nn0ledivnn ( ( 𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ ) → ( 𝑁 / 2 ) ≤ 𝑁 )
10 7 8 9 sylancl ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ≤ 𝑁 )
11 ceille ( ( ( 𝑁 / 2 ) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ≤ 𝑁 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ≤ 𝑁 )
12 4 6 10 11 syl3anc ( 𝑁 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ≤ 𝑁 )
13 eluz2 ( 𝑁 ∈ ( ℤ ‘ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ↔ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ≤ 𝑁 ) )
14 5 6 12 13 syl3anbrc ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ ‘ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
15 fzoss2 ( 𝑁 ∈ ( ℤ ‘ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ⊆ ( 1 ..^ 𝑁 ) )
16 14 15 syl ( 𝑁 ∈ ℕ → ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ⊆ ( 1 ..^ 𝑁 ) )
17 16 sseld ( 𝑁 ∈ ℕ → ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → 𝐾 ∈ ( 1 ..^ 𝑁 ) ) )
18 2 17 biimtrid ( 𝑁 ∈ ℕ → ( 𝐾𝐽𝐾 ∈ ( 1 ..^ 𝑁 ) ) )