Step |
Hyp |
Ref |
Expression |
1 |
|
ceilhalfelfzo1.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
3 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
4 |
3
|
rehalfcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ ) |
5 |
4
|
ceilcld |
⊢ ( 𝑁 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
6 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
7 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
8 |
|
2nn |
⊢ 2 ∈ ℕ |
9 |
|
nn0ledivnn |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ ) → ( 𝑁 / 2 ) ≤ 𝑁 ) |
10 |
7 8 9
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ≤ 𝑁 ) |
11 |
|
ceille |
⊢ ( ( ( 𝑁 / 2 ) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ≤ 𝑁 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ≤ 𝑁 ) |
12 |
4 6 10 11
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ≤ 𝑁 ) |
13 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ↔ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ≤ 𝑁 ) ) |
14 |
5 6 12 13
|
syl3anbrc |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
15 |
|
fzoss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ⊆ ( 1 ..^ 𝑁 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ⊆ ( 1 ..^ 𝑁 ) ) |
17 |
16
|
sseld |
⊢ ( 𝑁 ∈ ℕ → ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) |
18 |
2 17
|
biimtrid |
⊢ ( 𝑁 ∈ ℕ → ( 𝐾 ∈ 𝐽 → 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) |