| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1zzd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ℤ ) |
| 2 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℝ ) |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ∈ ℝ ) |
| 5 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ≠ 0 ) |
| 7 |
2 4 6
|
3jca |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0 ) ) |
| 8 |
|
redivcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
| 10 |
9
|
ceilcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 11 |
|
1red |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ℝ ) |
| 12 |
8
|
ceilcld |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 13 |
7 12
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 14 |
13
|
zred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
| 15 |
|
1lt2 |
⊢ 1 < 2 |
| 16 |
15
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 < 2 ) |
| 17 |
|
2ltceilhalf |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 18 |
11 4 14 16 17
|
ltletrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 19 |
|
fzolb |
⊢ ( 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ↔ ( 1 ∈ ℤ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 1 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 20 |
1 10 18 19
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 21 |
|
gpgusgra |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 1 ) ∈ USGraph ) |
| 22 |
20 21
|
mpdan |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 gPetersenGr 1 ) ∈ USGraph ) |