Step |
Hyp |
Ref |
Expression |
1 |
|
gpgorder.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
3 |
1 2
|
gpgvtx |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
4 |
3
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( ♯ ‘ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ) = ( ♯ ‘ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
5 |
|
prfi |
⊢ { 0 , 1 } ∈ Fin |
6 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
7 |
5 6
|
pm3.2i |
⊢ ( { 0 , 1 } ∈ Fin ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) |
8 |
|
hashxp |
⊢ ( ( { 0 , 1 } ∈ Fin ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) → ( ♯ ‘ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ { 0 , 1 } ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) |
9 |
7 8
|
mp1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( ♯ ‘ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ { 0 , 1 } ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) |
10 |
|
prhash2ex |
⊢ ( ♯ ‘ { 0 , 1 } ) = 2 |
11 |
10
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( ♯ ‘ { 0 , 1 } ) = 2 ) |
12 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
13 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
14 |
12 13
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
15 |
14
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
16 |
11 15
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( ( ♯ ‘ { 0 , 1 } ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) = ( 2 · 𝑁 ) ) |
17 |
4 9 16
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( ♯ ‘ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ) = ( 2 · 𝑁 ) ) |