Metamath Proof Explorer


Theorem gpgorder

Description: The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025)

Ref Expression
Hypothesis gpgorder.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
Assertion gpgorder ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ♯ ‘ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ) = ( 2 · 𝑁 ) )

Proof

Step Hyp Ref Expression
1 gpgorder.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 eqid ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 )
3 1 2 gpgvtx ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
4 3 fveq2d ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ♯ ‘ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ) = ( ♯ ‘ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) )
5 prfi { 0 , 1 } ∈ Fin
6 fzofi ( 0 ..^ 𝑁 ) ∈ Fin
7 5 6 pm3.2i ( { 0 , 1 } ∈ Fin ∧ ( 0 ..^ 𝑁 ) ∈ Fin )
8 hashxp ( ( { 0 , 1 } ∈ Fin ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) → ( ♯ ‘ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ { 0 , 1 } ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) )
9 7 8 mp1i ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ♯ ‘ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ { 0 , 1 } ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) )
10 prhash2ex ( ♯ ‘ { 0 , 1 } ) = 2
11 10 a1i ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ♯ ‘ { 0 , 1 } ) = 2 )
12 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
13 hashfzo0 ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 )
14 12 13 syl ( 𝑁 ∈ ℕ → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 )
15 14 adantr ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 )
16 11 15 oveq12d ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ( ♯ ‘ { 0 , 1 } ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) = ( 2 · 𝑁 ) )
17 4 9 16 3eqtrd ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ♯ ‘ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ) = ( 2 · 𝑁 ) )