| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5nn |
⊢ 5 ∈ ℕ |
| 2 |
|
2z |
⊢ 2 ∈ ℤ |
| 3 |
|
fzval3 |
⊢ ( 2 ∈ ℤ → ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) |
| 5 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 6 |
|
ceil5half3 |
⊢ ( ⌈ ‘ ( 5 / 2 ) ) = 3 |
| 7 |
5 6
|
eqtr4i |
⊢ ( 2 + 1 ) = ( ⌈ ‘ ( 5 / 2 ) ) |
| 8 |
7
|
oveq2i |
⊢ ( 1 ..^ ( 2 + 1 ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 9 |
4 8
|
eqtri |
⊢ ( 1 ... 2 ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 10 |
9
|
eleq2i |
⊢ ( 𝐾 ∈ ( 1 ... 2 ) ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
| 11 |
10
|
biimpi |
⊢ ( 𝐾 ∈ ( 1 ... 2 ) → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
| 12 |
|
eqid |
⊢ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 13 |
12
|
gpgorder |
⊢ ( ( 5 ∈ ℕ ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( ♯ ‘ ( Vtx ‘ ( 5 gPetersenGr 𝐾 ) ) ) = ( 2 · 5 ) ) |
| 14 |
1 11 13
|
sylancr |
⊢ ( 𝐾 ∈ ( 1 ... 2 ) → ( ♯ ‘ ( Vtx ‘ ( 5 gPetersenGr 𝐾 ) ) ) = ( 2 · 5 ) ) |
| 15 |
|
5cn |
⊢ 5 ∈ ℂ |
| 16 |
|
2cn |
⊢ 2 ∈ ℂ |
| 17 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
| 18 |
15 16 17
|
mulcomli |
⊢ ( 2 · 5 ) = ; 1 0 |
| 19 |
14 18
|
eqtrdi |
⊢ ( 𝐾 ∈ ( 1 ... 2 ) → ( ♯ ‘ ( Vtx ‘ ( 5 gPetersenGr 𝐾 ) ) ) = ; 1 0 ) |