Metamath Proof Explorer


Theorem gpg5order

Description: The order of a generalized Petersen graph G(5,K), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is 10. (Contributed by AV, 26-Aug-2025)

Ref Expression
Assertion gpg5order
|- ( K e. ( 1 ... 2 ) -> ( # ` ( Vtx ` ( 5 gPetersenGr K ) ) ) = ; 1 0 )

Proof

Step Hyp Ref Expression
1 5nn
 |-  5 e. NN
2 2z
 |-  2 e. ZZ
3 fzval3
 |-  ( 2 e. ZZ -> ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) )
4 2 3 ax-mp
 |-  ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) )
5 2p1e3
 |-  ( 2 + 1 ) = 3
6 ceil5half3
 |-  ( |^ ` ( 5 / 2 ) ) = 3
7 5 6 eqtr4i
 |-  ( 2 + 1 ) = ( |^ ` ( 5 / 2 ) )
8 7 oveq2i
 |-  ( 1 ..^ ( 2 + 1 ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) )
9 4 8 eqtri
 |-  ( 1 ... 2 ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) )
10 9 eleq2i
 |-  ( K e. ( 1 ... 2 ) <-> K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) )
11 10 biimpi
 |-  ( K e. ( 1 ... 2 ) -> K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) )
12 eqid
 |-  ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) )
13 12 gpgorder
 |-  ( ( 5 e. NN /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( # ` ( Vtx ` ( 5 gPetersenGr K ) ) ) = ( 2 x. 5 ) )
14 1 11 13 sylancr
 |-  ( K e. ( 1 ... 2 ) -> ( # ` ( Vtx ` ( 5 gPetersenGr K ) ) ) = ( 2 x. 5 ) )
15 5cn
 |-  5 e. CC
16 2cn
 |-  2 e. CC
17 5t2e10
 |-  ( 5 x. 2 ) = ; 1 0
18 15 16 17 mulcomli
 |-  ( 2 x. 5 ) = ; 1 0
19 14 18 eqtrdi
 |-  ( K e. ( 1 ... 2 ) -> ( # ` ( Vtx ` ( 5 gPetersenGr K ) ) ) = ; 1 0 )