| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgorder.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 2 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 3 |
1 2
|
gpgvtx |
|- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 4 |
3
|
fveq2d |
|- ( ( N e. NN /\ K e. J ) -> ( # ` ( Vtx ` ( N gPetersenGr K ) ) ) = ( # ` ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
| 5 |
|
prfi |
|- { 0 , 1 } e. Fin |
| 6 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 7 |
5 6
|
pm3.2i |
|- ( { 0 , 1 } e. Fin /\ ( 0 ..^ N ) e. Fin ) |
| 8 |
|
hashxp |
|- ( ( { 0 , 1 } e. Fin /\ ( 0 ..^ N ) e. Fin ) -> ( # ` ( { 0 , 1 } X. ( 0 ..^ N ) ) ) = ( ( # ` { 0 , 1 } ) x. ( # ` ( 0 ..^ N ) ) ) ) |
| 9 |
7 8
|
mp1i |
|- ( ( N e. NN /\ K e. J ) -> ( # ` ( { 0 , 1 } X. ( 0 ..^ N ) ) ) = ( ( # ` { 0 , 1 } ) x. ( # ` ( 0 ..^ N ) ) ) ) |
| 10 |
|
prhash2ex |
|- ( # ` { 0 , 1 } ) = 2 |
| 11 |
10
|
a1i |
|- ( ( N e. NN /\ K e. J ) -> ( # ` { 0 , 1 } ) = 2 ) |
| 12 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 13 |
|
hashfzo0 |
|- ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) |
| 14 |
12 13
|
syl |
|- ( N e. NN -> ( # ` ( 0 ..^ N ) ) = N ) |
| 15 |
14
|
adantr |
|- ( ( N e. NN /\ K e. J ) -> ( # ` ( 0 ..^ N ) ) = N ) |
| 16 |
11 15
|
oveq12d |
|- ( ( N e. NN /\ K e. J ) -> ( ( # ` { 0 , 1 } ) x. ( # ` ( 0 ..^ N ) ) ) = ( 2 x. N ) ) |
| 17 |
4 9 16
|
3eqtrd |
|- ( ( N e. NN /\ K e. J ) -> ( # ` ( Vtx ` ( N gPetersenGr K ) ) ) = ( 2 x. N ) ) |