Metamath Proof Explorer


Theorem gpgedgvtx0

Description: The edges starting at a vertex of the first kind in a generalized Petersen graph G . (Contributed by AV, 29-Aug-2025)

Ref Expression
Hypotheses gpgedgvtx0.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgedgvtx0.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
gpgedgvtx0.v 𝑉 = ( Vtx ‘ 𝐺 )
gpgedgvtx0.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion gpgedgvtx0 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 gpgedgvtx0.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgedgvtx0.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
3 gpgedgvtx0.v 𝑉 = ( Vtx ‘ 𝐺 )
4 gpgedgvtx0.e 𝐸 = ( Edg ‘ 𝐺 )
5 eqid ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 )
6 5 1 2 3 gpgvtxel ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) )
7 fveq2 ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑋 ) = ( 1st ‘ ⟨ 𝑥 , 𝑦 ⟩ ) )
8 7 adantl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( 1st𝑋 ) = ( 1st ‘ ⟨ 𝑥 , 𝑦 ⟩ ) )
9 vex 𝑥 ∈ V
10 vex 𝑦 ∈ V
11 9 10 op1st ( 1st ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑥
12 8 11 eqtrdi ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( 1st𝑋 ) = 𝑥 )
13 12 eqeq1d ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( ( 1st𝑋 ) = 0 ↔ 𝑥 = 0 ) )
14 opeq1 ( 𝑥 = 0 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 0 , 𝑦 ⟩ )
15 14 eqeq2d ( 𝑥 = 0 → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑋 = ⟨ 0 , 𝑦 ⟩ ) )
16 15 adantl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑥 = 0 ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑋 = ⟨ 0 , 𝑦 ⟩ ) )
17 simpr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 ∈ ( 0 ..^ 𝑁 ) )
18 opeq2 ( 𝑧 = 𝑦 → ⟨ 0 , 𝑧 ⟩ = ⟨ 0 , 𝑦 ⟩ )
19 oveq1 ( 𝑧 = 𝑦 → ( 𝑧 + 1 ) = ( 𝑦 + 1 ) )
20 19 oveq1d ( 𝑧 = 𝑦 → ( ( 𝑧 + 1 ) mod 𝑁 ) = ( ( 𝑦 + 1 ) mod 𝑁 ) )
21 20 opeq2d ( 𝑧 = 𝑦 → ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ )
22 18 21 preq12d ( 𝑧 = 𝑦 → { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } )
23 22 eqeq2d ( 𝑧 = 𝑦 → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ) )
24 opeq2 ( 𝑧 = 𝑦 → ⟨ 1 , 𝑧 ⟩ = ⟨ 1 , 𝑦 ⟩ )
25 18 24 preq12d ( 𝑧 = 𝑦 → { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } )
26 25 eqeq2d ( 𝑧 = 𝑦 → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ) )
27 oveq1 ( 𝑧 = 𝑦 → ( 𝑧 + 𝐾 ) = ( 𝑦 + 𝐾 ) )
28 27 oveq1d ( 𝑧 = 𝑦 → ( ( 𝑧 + 𝐾 ) mod 𝑁 ) = ( ( 𝑦 + 𝐾 ) mod 𝑁 ) )
29 28 opeq2d ( 𝑧 = 𝑦 → ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ )
30 24 29 preq12d ( 𝑧 = 𝑦 → { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } )
31 30 eqeq2d ( 𝑧 = 𝑦 → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
32 23 26 31 3orbi123d ( 𝑧 = 𝑦 → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
33 32 adantl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑧 = 𝑦 ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
34 eqid { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ }
35 34 3mix1i ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } )
36 35 a1i ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
37 17 33 36 rspcedvd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
38 22 eqeq2d ( 𝑧 = 𝑦 → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ) )
39 25 eqeq2d ( 𝑧 = 𝑦 → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ) )
40 30 eqeq2d ( 𝑧 = 𝑦 → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
41 38 39 40 3orbi123d ( 𝑧 = 𝑦 → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
42 41 adantl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑧 = 𝑦 ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
43 eqid { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ }
44 43 3mix2i ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } )
45 44 a1i ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
46 17 42 45 rspcedvd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
47 elfzo0l ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 = 0 ∨ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) )
48 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
49 48 ad2antrr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 = 0 ) → 𝑁 ∈ ℕ )
50 fzo0end ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑁 ) )
51 49 50 syl ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 = 0 ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑁 ) )
52 opeq2 ( 𝑦 = 0 → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 0 ⟩ )
53 oveq1 ( 𝑦 = 0 → ( 𝑦 − 1 ) = ( 0 − 1 ) )
54 53 oveq1d ( 𝑦 = 0 → ( ( 𝑦 − 1 ) mod 𝑁 ) = ( ( 0 − 1 ) mod 𝑁 ) )
55 54 opeq2d ( 𝑦 = 0 → ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ )
56 52 55 preq12d ( 𝑦 = 0 → { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } )
57 opeq2 ( 𝑧 = ( 𝑁 − 1 ) → ⟨ 0 , 𝑧 ⟩ = ⟨ 0 , ( 𝑁 − 1 ) ⟩ )
58 oveq1 ( 𝑧 = ( 𝑁 − 1 ) → ( 𝑧 + 1 ) = ( ( 𝑁 − 1 ) + 1 ) )
59 58 oveq1d ( 𝑧 = ( 𝑁 − 1 ) → ( ( 𝑧 + 1 ) mod 𝑁 ) = ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) )
60 59 opeq2d ( 𝑧 = ( 𝑁 − 1 ) → ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ )
61 57 60 preq12d ( 𝑧 = ( 𝑁 − 1 ) → { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ } )
62 56 61 eqeqan12d ( ( 𝑦 = 0 ∧ 𝑧 = ( 𝑁 − 1 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ } ) )
63 opeq2 ( 𝑧 = ( 𝑁 − 1 ) → ⟨ 1 , 𝑧 ⟩ = ⟨ 1 , ( 𝑁 − 1 ) ⟩ )
64 57 63 preq12d ( 𝑧 = ( 𝑁 − 1 ) → { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( 𝑁 − 1 ) ⟩ } )
65 56 64 eqeqan12d ( ( 𝑦 = 0 ∧ 𝑧 = ( 𝑁 − 1 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( 𝑁 − 1 ) ⟩ } ) )
66 oveq1 ( 𝑧 = ( 𝑁 − 1 ) → ( 𝑧 + 𝐾 ) = ( ( 𝑁 − 1 ) + 𝐾 ) )
67 66 oveq1d ( 𝑧 = ( 𝑁 − 1 ) → ( ( 𝑧 + 𝐾 ) mod 𝑁 ) = ( ( ( 𝑁 − 1 ) + 𝐾 ) mod 𝑁 ) )
68 67 opeq2d ( 𝑧 = ( 𝑁 − 1 ) → ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( ( ( 𝑁 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ )
69 63 68 preq12d ( 𝑧 = ( 𝑁 − 1 ) → { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑁 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } )
70 56 69 eqeqan12d ( ( 𝑦 = 0 ∧ 𝑧 = ( 𝑁 − 1 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑁 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } ) )
71 62 65 70 3orbi123d ( ( 𝑦 = 0 ∧ 𝑧 = ( 𝑁 − 1 ) ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( 𝑁 − 1 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑁 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
72 71 adantll ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 = 0 ) ∧ 𝑧 = ( 𝑁 − 1 ) ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( 𝑁 − 1 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑁 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
73 nncn ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ )
74 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
75 48 73 74 3syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
76 75 oveq1d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) = ( 𝑁 mod 𝑁 ) )
77 nnrp ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ )
78 modid0 ( 𝑁 ∈ ℝ+ → ( 𝑁 mod 𝑁 ) = 0 )
79 48 77 78 3syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑁 mod 𝑁 ) = 0 )
80 76 79 eqtr2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → 0 = ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) )
81 80 opeq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 0 , 0 ⟩ = ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ )
82 df-neg - 1 = ( 0 − 1 )
83 82 eqcomi ( 0 − 1 ) = - 1
84 83 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 0 − 1 ) = - 1 )
85 84 oveq1d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 0 − 1 ) mod 𝑁 ) = ( - 1 mod 𝑁 ) )
86 m1modnnsub1 ( 𝑁 ∈ ℕ → ( - 1 mod 𝑁 ) = ( 𝑁 − 1 ) )
87 48 86 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( - 1 mod 𝑁 ) = ( 𝑁 − 1 ) )
88 85 87 eqtrd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 0 − 1 ) mod 𝑁 ) = ( 𝑁 − 1 ) )
89 88 opeq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( 𝑁 − 1 ) ⟩ )
90 81 89 preq12d ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 𝑁 − 1 ) ⟩ } )
91 90 ad2antrr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 = 0 ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 𝑁 − 1 ) ⟩ } )
92 prcom { ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 𝑁 − 1 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ }
93 91 92 eqtrdi ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 = 0 ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ } )
94 93 3mix1d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 = 0 ) → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑁 − 1 ) + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( 𝑁 − 1 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑁 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑁 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } ) )
95 51 72 94 rspcedvd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 = 0 ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
96 95 expcom ( 𝑦 = 0 → ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
97 elfzofz ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → 𝑦 ∈ ( 1 ... 𝑁 ) )
98 fz1fzo0m1 ( 𝑦 ∈ ( 1 ... 𝑁 ) → ( 𝑦 − 1 ) ∈ ( 0 ..^ 𝑁 ) )
99 97 98 syl ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → ( 𝑦 − 1 ) ∈ ( 0 ..^ 𝑁 ) )
100 99 adantl ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑦 − 1 ) ∈ ( 0 ..^ 𝑁 ) )
101 opeq2 ( 𝑧 = ( 𝑦 − 1 ) → ⟨ 0 , 𝑧 ⟩ = ⟨ 0 , ( 𝑦 − 1 ) ⟩ )
102 oveq1 ( 𝑧 = ( 𝑦 − 1 ) → ( 𝑧 + 1 ) = ( ( 𝑦 − 1 ) + 1 ) )
103 102 oveq1d ( 𝑧 = ( 𝑦 − 1 ) → ( ( 𝑧 + 1 ) mod 𝑁 ) = ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) )
104 103 opeq2d ( 𝑧 = ( 𝑦 − 1 ) → ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ )
105 101 104 preq12d ( 𝑧 = ( 𝑦 − 1 ) → { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ } )
106 105 eqeq2d ( 𝑧 = ( 𝑦 − 1 ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ } ) )
107 opeq2 ( 𝑧 = ( 𝑦 − 1 ) → ⟨ 1 , 𝑧 ⟩ = ⟨ 1 , ( 𝑦 − 1 ) ⟩ )
108 101 107 preq12d ( 𝑧 = ( 𝑦 − 1 ) → { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( 𝑦 − 1 ) ⟩ } )
109 108 eqeq2d ( 𝑧 = ( 𝑦 − 1 ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( 𝑦 − 1 ) ⟩ } ) )
110 oveq1 ( 𝑧 = ( 𝑦 − 1 ) → ( 𝑧 + 𝐾 ) = ( ( 𝑦 − 1 ) + 𝐾 ) )
111 110 oveq1d ( 𝑧 = ( 𝑦 − 1 ) → ( ( 𝑧 + 𝐾 ) mod 𝑁 ) = ( ( ( 𝑦 − 1 ) + 𝐾 ) mod 𝑁 ) )
112 111 opeq2d ( 𝑧 = ( 𝑦 − 1 ) → ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( ( ( 𝑦 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ )
113 107 112 preq12d ( 𝑧 = ( 𝑦 − 1 ) → { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑦 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } )
114 113 eqeq2d ( 𝑧 = ( 𝑦 − 1 ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑦 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } ) )
115 106 109 114 3orbi123d ( 𝑧 = ( 𝑦 − 1 ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( 𝑦 − 1 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑦 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
116 115 adantl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) ∧ 𝑧 = ( 𝑦 − 1 ) ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( 𝑦 − 1 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑦 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
117 elfzoelz ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → 𝑦 ∈ ℤ )
118 zcn ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ )
119 npcan1 ( 𝑦 ∈ ℂ → ( ( 𝑦 − 1 ) + 1 ) = 𝑦 )
120 117 118 119 3syl ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑦 − 1 ) + 1 ) = 𝑦 )
121 120 oveq1d ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) = ( 𝑦 mod 𝑁 ) )
122 elfzo1 ( 𝑦 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) )
123 nnre ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ )
124 123 77 anim12i ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) )
125 124 3adant3 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) )
126 nnnn0 ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 )
127 126 nn0ge0d ( 𝑦 ∈ ℕ → 0 ≤ 𝑦 )
128 127 anim1i ( ( 𝑦 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( 0 ≤ 𝑦𝑦 < 𝑁 ) )
129 128 3adant2 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( 0 ≤ 𝑦𝑦 < 𝑁 ) )
130 125 129 jca ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ 𝑦𝑦 < 𝑁 ) ) )
131 122 130 sylbi ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ 𝑦𝑦 < 𝑁 ) ) )
132 modid ( ( ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ 𝑦𝑦 < 𝑁 ) ) → ( 𝑦 mod 𝑁 ) = 𝑦 )
133 131 132 syl ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → ( 𝑦 mod 𝑁 ) = 𝑦 )
134 121 133 eqtrd ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) = 𝑦 )
135 134 adantl ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) = 𝑦 )
136 135 eqcomd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → 𝑦 = ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) )
137 136 opeq2d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ )
138 1red ( 𝑦 ∈ ℕ → 1 ∈ ℝ )
139 123 138 resubcld ( 𝑦 ∈ ℕ → ( 𝑦 − 1 ) ∈ ℝ )
140 139 77 anim12i ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) )
141 140 3adant3 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) )
142 nnm1ge0 ( 𝑦 ∈ ℕ → 0 ≤ ( 𝑦 − 1 ) )
143 142 3ad2ant1 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → 0 ≤ ( 𝑦 − 1 ) )
144 139 3ad2ant1 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( 𝑦 − 1 ) ∈ ℝ )
145 123 3ad2ant1 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → 𝑦 ∈ ℝ )
146 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
147 146 3ad2ant2 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → 𝑁 ∈ ℝ )
148 123 ltm1d ( 𝑦 ∈ ℕ → ( 𝑦 − 1 ) < 𝑦 )
149 148 3ad2ant1 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( 𝑦 − 1 ) < 𝑦 )
150 simp3 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → 𝑦 < 𝑁 )
151 144 145 147 149 150 lttrd ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( 𝑦 − 1 ) < 𝑁 )
152 141 143 151 jca32 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → ( ( ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝑦 − 1 ) ∧ ( 𝑦 − 1 ) < 𝑁 ) ) )
153 122 152 sylbi ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → ( ( ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝑦 − 1 ) ∧ ( 𝑦 − 1 ) < 𝑁 ) ) )
154 153 adantl ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( ( ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝑦 − 1 ) ∧ ( 𝑦 − 1 ) < 𝑁 ) ) )
155 modid ( ( ( ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝑦 − 1 ) ∧ ( 𝑦 − 1 ) < 𝑁 ) ) → ( ( 𝑦 − 1 ) mod 𝑁 ) = ( 𝑦 − 1 ) )
156 154 155 syl ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝑦 − 1 ) mod 𝑁 ) = ( 𝑦 − 1 ) )
157 156 opeq2d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( 𝑦 − 1 ) ⟩ )
158 137 157 preq12d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 𝑦 − 1 ) ⟩ } )
159 prcom { ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 𝑦 − 1 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ }
160 158 159 eqtrdi ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ } )
161 160 3mix1d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 0 , ( ( ( 𝑦 − 1 ) + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( 𝑦 − 1 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , ( 𝑦 − 1 ) ⟩ , ⟨ 1 , ( ( ( 𝑦 − 1 ) + 𝐾 ) mod 𝑁 ) ⟩ } ) )
162 100 116 161 rspcedvd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
163 162 expcom ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
164 96 163 jaoi ( ( 𝑦 = 0 ∨ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
165 47 164 syl ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
166 165 impcom ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
167 5 1 2 4 gpgedgel ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ↔ ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
168 5 1 2 4 gpgedgel ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ↔ ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
169 5 1 2 4 gpgedgel ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ↔ ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
170 167 168 169 3anbi123d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ↔ ( ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ∧ ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ∧ ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) ) )
171 170 adantr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ↔ ( ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ∧ ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ∧ ∃ 𝑧 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 0 , ( ( 𝑧 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑧 ⟩ , ⟨ 1 , 𝑧 ⟩ } ∨ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 𝑧 ⟩ , ⟨ 1 , ( ( 𝑧 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) ) )
172 37 46 166 171 mpbir3and ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) )
173 172 adantrl ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) )
174 id ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → 𝑋 = ⟨ 0 , 𝑦 ⟩ )
175 c0ex 0 ∈ V
176 175 10 op2ndd ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 2nd𝑋 ) = 𝑦 )
177 176 oveq1d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( 2nd𝑋 ) + 1 ) = ( 𝑦 + 1 ) )
178 177 oveq1d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) = ( ( 𝑦 + 1 ) mod 𝑁 ) )
179 178 opeq2d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ )
180 174 179 preq12d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } )
181 180 eleq1d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) )
182 176 opeq2d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ⟨ 1 , ( 2nd𝑋 ) ⟩ = ⟨ 1 , 𝑦 ⟩ )
183 174 182 preq12d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } )
184 183 eleq1d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) )
185 176 oveq1d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( 2nd𝑋 ) − 1 ) = ( 𝑦 − 1 ) )
186 185 oveq1d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) = ( ( 𝑦 − 1 ) mod 𝑁 ) )
187 186 opeq2d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ )
188 174 187 preq12d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } )
189 188 eleq1d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) )
190 181 184 189 3anbi123d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) )
191 173 190 syl5ibrcom ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) )
192 191 adantr ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑥 = 0 ) → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) )
193 16 192 sylbid ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑥 = 0 ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) )
194 193 impancom ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( 𝑥 = 0 → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) )
195 13 194 sylbid ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( ( 1st𝑋 ) = 0 → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) )
196 195 ex ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 1st𝑋 ) = 0 → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) ) )
197 196 rexlimdvva ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 1st𝑋 ) = 0 → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) ) )
198 6 197 sylbid ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋𝑉 → ( ( 1st𝑋 ) = 0 → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) ) ) )
199 198 imp32 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ∧ { 𝑋 , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) )