Metamath Proof Explorer


Theorem pj11

Description: One-to-one correspondence of projection and subspace. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pj11 GCHCprojG=projHG=H

Proof

Step Hyp Ref Expression
1 fveqeq2 G=ifGCG0projG=projHprojifGCG0=projH
2 eqeq1 G=ifGCG0G=HifGCG0=H
3 1 2 bibi12d G=ifGCG0projG=projHG=HprojifGCG0=projHifGCG0=H
4 fveq2 H=ifHCH0projH=projifHCH0
5 4 eqeq2d H=ifHCH0projifGCG0=projHprojifGCG0=projifHCH0
6 eqeq2 H=ifHCH0ifGCG0=HifGCG0=ifHCH0
7 5 6 bibi12d H=ifHCH0projifGCG0=projHifGCG0=HprojifGCG0=projifHCH0ifGCG0=ifHCH0
8 h0elch 0C
9 8 elimel ifGCG0C
10 8 elimel ifHCH0C
11 9 10 pj11i projifGCG0=projifHCH0ifGCG0=ifHCH0
12 3 7 11 dedth2h GCHCprojG=projHG=H