| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveqeq2 |
|- ( G = if ( G e. CH , G , 0H ) -> ( ( projh ` G ) = ( projh ` H ) <-> ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` H ) ) ) |
| 2 |
|
eqeq1 |
|- ( G = if ( G e. CH , G , 0H ) -> ( G = H <-> if ( G e. CH , G , 0H ) = H ) ) |
| 3 |
1 2
|
bibi12d |
|- ( G = if ( G e. CH , G , 0H ) -> ( ( ( projh ` G ) = ( projh ` H ) <-> G = H ) <-> ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` H ) <-> if ( G e. CH , G , 0H ) = H ) ) ) |
| 4 |
|
fveq2 |
|- ( H = if ( H e. CH , H , 0H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , 0H ) ) ) |
| 5 |
4
|
eqeq2d |
|- ( H = if ( H e. CH , H , 0H ) -> ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` H ) <-> ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` if ( H e. CH , H , 0H ) ) ) ) |
| 6 |
|
eqeq2 |
|- ( H = if ( H e. CH , H , 0H ) -> ( if ( G e. CH , G , 0H ) = H <-> if ( G e. CH , G , 0H ) = if ( H e. CH , H , 0H ) ) ) |
| 7 |
5 6
|
bibi12d |
|- ( H = if ( H e. CH , H , 0H ) -> ( ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` H ) <-> if ( G e. CH , G , 0H ) = H ) <-> ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` if ( H e. CH , H , 0H ) ) <-> if ( G e. CH , G , 0H ) = if ( H e. CH , H , 0H ) ) ) ) |
| 8 |
|
h0elch |
|- 0H e. CH |
| 9 |
8
|
elimel |
|- if ( G e. CH , G , 0H ) e. CH |
| 10 |
8
|
elimel |
|- if ( H e. CH , H , 0H ) e. CH |
| 11 |
9 10
|
pj11i |
|- ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` if ( H e. CH , H , 0H ) ) <-> if ( G e. CH , G , 0H ) = if ( H e. CH , H , 0H ) ) |
| 12 |
3 7 11
|
dedth2h |
|- ( ( G e. CH /\ H e. CH ) -> ( ( projh ` G ) = ( projh ` H ) <-> G = H ) ) |