Metamath Proof Explorer


Theorem pjadj3

Description: A projector is self-adjoint. Property (i) of Beran p. 109. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion pjadj3 H C adj h proj H = proj H

Proof

Step Hyp Ref Expression
1 pjmfn proj Fn C
2 fnfvelrn proj Fn C H C proj H ran proj
3 1 2 mpan H C proj H ran proj
4 pjadj2 proj H ran proj adj h proj H = proj H
5 3 4 syl H C adj h proj H = proj H