Metamath Proof Explorer


Theorem pjcoi

Description: Composition of projections. (Contributed by NM, 16-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 G C
pjco.2 H C
Assertion pjcoi A proj G proj H A = proj G proj H A

Proof

Step Hyp Ref Expression
1 pjco.1 G C
2 pjco.2 H C
3 1 pjfi proj G :
4 2 pjfi proj H :
5 3 4 hocoi A proj G proj H A = proj G proj H A