Metamath Proof Explorer


Theorem ple1

Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011) (Revised by NM, 13-Sep-2018)

Ref Expression
Hypotheses ple1.b B=BaseK
ple1.u U=lubK
ple1.l ˙=K
ple1.1 1˙=1.K
ple1.k φKV
ple1.x φXB
ple1.d φBdomU
Assertion ple1 φX˙1˙

Proof

Step Hyp Ref Expression
1 ple1.b B=BaseK
2 ple1.u U=lubK
3 ple1.l ˙=K
4 ple1.1 1˙=1.K
5 ple1.k φKV
6 ple1.x φXB
7 ple1.d φBdomU
8 1 3 2 5 7 6 luble φX˙UB
9 1 2 4 p1val KV1˙=UB
10 5 9 syl φ1˙=UB
11 8 10 breqtrrd φX˙1˙