Metamath Proof Explorer


Theorem pltirr

Description: The "less than" relation is not reflexive. ( pssirr analog.) (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypothesis pltne.s <˙=<K
Assertion pltirr KAXB¬X<˙X

Proof

Step Hyp Ref Expression
1 pltne.s <˙=<K
2 eqid X=X
3 1 pltne KAXBXBX<˙XXX
4 3 3anidm23 KAXBX<˙XXX
5 4 necon2bd KAXBX=X¬X<˙X
6 2 5 mpi KAXB¬X<˙X