Metamath Proof Explorer


Theorem pleval2i

Description: One direction of pleval2 . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses pleval2.b B=BaseK
pleval2.l ˙=K
pleval2.s <˙=<K
Assertion pleval2i XBYBX˙YX<˙YX=Y

Proof

Step Hyp Ref Expression
1 pleval2.b B=BaseK
2 pleval2.l ˙=K
3 pleval2.s <˙=<K
4 elfvdm XBaseKKdomBase
5 4 1 eleq2s XBKdomBase
6 5 adantr XBYBKdomBase
7 2 3 pltval KdomBaseXBYBX<˙YX˙YXY
8 7 3expb KdomBaseXBYBX<˙YX˙YXY
9 6 8 mpancom XBYBX<˙YX˙YXY
10 9 biimpar XBYBX˙YXYX<˙Y
11 10 expr XBYBX˙YXYX<˙Y
12 11 necon1bd XBYBX˙Y¬X<˙YX=Y
13 12 orrd XBYBX˙YX<˙YX=Y
14 13 ex XBYBX˙YX<˙YX=Y