| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pleval2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
pleval2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
pleval2.s |
⊢ < = ( lt ‘ 𝐾 ) |
| 4 |
|
elfvdm |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐾 ) → 𝐾 ∈ dom Base ) |
| 5 |
4 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐵 → 𝐾 ∈ dom Base ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ dom Base ) |
| 7 |
2 3
|
pltval |
⊢ ( ( 𝐾 ∈ dom Base ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 8 |
7
|
3expb |
⊢ ( ( 𝐾 ∈ dom Base ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 9 |
6 8
|
mpancom |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 10 |
9
|
biimpar |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 < 𝑌 ) |
| 11 |
10
|
expr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ≠ 𝑌 → 𝑋 < 𝑌 ) ) |
| 12 |
11
|
necon1bd |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ¬ 𝑋 < 𝑌 → 𝑋 = 𝑌 ) ) |
| 13 |
12
|
orrd |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) |
| 14 |
13
|
ex |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |