Metamath Proof Explorer


Theorem plvcofphax

Description: Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plvcofphax.1 χφψφφ¬φ¬φφ¬φ¬φ
plvcofphax.2 τχθφχφψψθ
plvcofphax.3 ηχτ
plvcofphax.4 φ
plvcofphax.5 ψ
plvcofphax.6 θ
plvcofphax.7 ζ¬ψ¬τ
Assertion plvcofphax ζ

Proof

Step Hyp Ref Expression
1 plvcofphax.1 χφψφφ¬φ¬φφ¬φ¬φ
2 plvcofphax.2 τχθφχφψψθ
3 plvcofphax.3 ηχτ
4 plvcofphax.4 φ
5 plvcofphax.5 ψ
6 plvcofphax.6 θ
7 plvcofphax.7 ζ¬ψ¬τ
8 1 4 5 plcofph χ
9 2 4 5 8 6 pldofph τ
10 5 9 pm3.2i ψτ
11 pm3.4 ψτψτ
12 10 11 ax-mp ψτ
13 iman ψτ¬ψ¬τ
14 13 biimpi ψτ¬ψ¬τ
15 12 14 ax-mp ¬ψ¬τ
16 7 bicomi ¬ψ¬τζ
17 16 biimpi ¬ψ¬τζ
18 15 17 ax-mp ζ