Metamath Proof Explorer


Theorem plvcofphax

Description: Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plvcofphax.1 ( 𝜒 ↔ ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) )
plvcofphax.2 ( 𝜏 ↔ ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) ) )
plvcofphax.3 ( 𝜂 ↔ ( 𝜒𝜏 ) )
plvcofphax.4 𝜑
plvcofphax.5 𝜓
plvcofphax.6 𝜃
plvcofphax.7 ( 𝜁 ↔ ¬ ( 𝜓 ∧ ¬ 𝜏 ) )
Assertion plvcofphax 𝜁

Proof

Step Hyp Ref Expression
1 plvcofphax.1 ( 𝜒 ↔ ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) )
2 plvcofphax.2 ( 𝜏 ↔ ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) ) )
3 plvcofphax.3 ( 𝜂 ↔ ( 𝜒𝜏 ) )
4 plvcofphax.4 𝜑
5 plvcofphax.5 𝜓
6 plvcofphax.6 𝜃
7 plvcofphax.7 ( 𝜁 ↔ ¬ ( 𝜓 ∧ ¬ 𝜏 ) )
8 1 4 5 plcofph 𝜒
9 2 4 5 8 6 pldofph 𝜏
10 5 9 pm3.2i ( 𝜓𝜏 )
11 pm3.4 ( ( 𝜓𝜏 ) → ( 𝜓𝜏 ) )
12 10 11 ax-mp ( 𝜓𝜏 )
13 iman ( ( 𝜓𝜏 ) ↔ ¬ ( 𝜓 ∧ ¬ 𝜏 ) )
14 13 biimpi ( ( 𝜓𝜏 ) → ¬ ( 𝜓 ∧ ¬ 𝜏 ) )
15 12 14 ax-mp ¬ ( 𝜓 ∧ ¬ 𝜏 )
16 7 bicomi ( ¬ ( 𝜓 ∧ ¬ 𝜏 ) ↔ 𝜁 )
17 16 biimpi ( ¬ ( 𝜓 ∧ ¬ 𝜏 ) → 𝜁 )
18 15 17 ax-mp 𝜁