Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 10
pm10.55
Next ⟩
pm10.56
Metamath Proof Explorer
Ascii
Unicode
Theorem
pm10.55
Description:
Theorem *10.55 in
WhiteheadRussell
p. 156.
(Contributed by
Andrew Salmon
, 24-May-2011)
Ref
Expression
Assertion
pm10.55
⊢
∃
x
φ
∧
ψ
∧
∀
x
φ
→
ψ
↔
∃
x
φ
∧
∀
x
φ
→
ψ
Proof
Step
Hyp
Ref
Expression
1
exsimpl
⊢
∃
x
φ
∧
ψ
→
∃
x
φ
2
1
anim1i
⊢
∃
x
φ
∧
ψ
∧
∀
x
φ
→
ψ
→
∃
x
φ
∧
∀
x
φ
→
ψ
3
exintr
⊢
∀
x
φ
→
ψ
→
∃
x
φ
→
∃
x
φ
∧
ψ
4
3
imdistanri
⊢
∃
x
φ
∧
∀
x
φ
→
ψ
→
∃
x
φ
∧
ψ
∧
∀
x
φ
→
ψ
5
2
4
impbii
⊢
∃
x
φ
∧
ψ
∧
∀
x
φ
→
ψ
↔
∃
x
φ
∧
∀
x
φ
→
ψ