Description: Theorem *10.55 in WhiteheadRussell p. 156. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm10.55 | |- ( ( E. x ( ph /\ ps ) /\ A. x ( ph -> ps ) ) <-> ( E. x ph /\ A. x ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl | |- ( E. x ( ph /\ ps ) -> E. x ph ) |
|
2 | 1 | anim1i | |- ( ( E. x ( ph /\ ps ) /\ A. x ( ph -> ps ) ) -> ( E. x ph /\ A. x ( ph -> ps ) ) ) |
3 | exintr | |- ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |
|
4 | 3 | imdistanri | |- ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ( E. x ( ph /\ ps ) /\ A. x ( ph -> ps ) ) ) |
5 | 2 4 | impbii | |- ( ( E. x ( ph /\ ps ) /\ A. x ( ph -> ps ) ) <-> ( E. x ph /\ A. x ( ph -> ps ) ) ) |