Metamath Proof Explorer


Theorem pm10.55

Description: Theorem *10.55 in WhiteheadRussell p. 156. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm10.55
|- ( ( E. x ( ph /\ ps ) /\ A. x ( ph -> ps ) ) <-> ( E. x ph /\ A. x ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 exsimpl
 |-  ( E. x ( ph /\ ps ) -> E. x ph )
2 1 anim1i
 |-  ( ( E. x ( ph /\ ps ) /\ A. x ( ph -> ps ) ) -> ( E. x ph /\ A. x ( ph -> ps ) ) )
3 exintr
 |-  ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) )
4 3 imdistanri
 |-  ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ( E. x ( ph /\ ps ) /\ A. x ( ph -> ps ) ) )
5 2 4 impbii
 |-  ( ( E. x ( ph /\ ps ) /\ A. x ( ph -> ps ) ) <-> ( E. x ph /\ A. x ( ph -> ps ) ) )