Metamath Proof Explorer


Theorem pm11.52

Description: Theorem *11.52 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.52 x y φ ψ ¬ x y φ ¬ ψ

Proof

Step Hyp Ref Expression
1 df-an φ ψ ¬ φ ¬ ψ
2 1 2exbii x y φ ψ x y ¬ φ ¬ ψ
3 2nalexn ¬ x y φ ¬ ψ x y ¬ φ ¬ ψ
4 2 3 bitr4i x y φ ψ ¬ x y φ ¬ ψ