Metamath Proof Explorer


Theorem pm11.52

Description: Theorem *11.52 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.52 xyφψ¬xyφ¬ψ

Proof

Step Hyp Ref Expression
1 df-an φψ¬φ¬ψ
2 1 2exbii xyφψxy¬φ¬ψ
3 2nalexn ¬xyφ¬ψxy¬φ¬ψ
4 2 3 bitr4i xyφψ¬xyφ¬ψ