Metamath Proof Explorer


Theorem pm11.58

Description: Theorem *11.58 in WhiteheadRussell p. 165. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.58 xφxyφyxφ

Proof

Step Hyp Ref Expression
1 19.8a φxφ
2 nfv yφ
3 2 sb8e xφyyxφ
4 1 3 sylib φyyxφ
5 4 pm4.71i φφyyxφ
6 19.42v yφyxφφyyxφ
7 5 6 bitr4i φyφyxφ
8 7 exbii xφxyφyxφ