Description: Theorem *11.58 in WhiteheadRussell p. 165. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm11.58 | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a | ⊢ ( 𝜑 → ∃ 𝑥 𝜑 ) | |
2 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
3 | 2 | sb8e | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
4 | 1 3 | sylib | ⊢ ( 𝜑 → ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
5 | 4 | pm4.71i | ⊢ ( 𝜑 ↔ ( 𝜑 ∧ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
7 | 5 6 | bitr4i | ⊢ ( 𝜑 ↔ ∃ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
8 | 7 | exbii | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |