Metamath Proof Explorer


Theorem pm11.58

Description: Theorem *11.58 in WhiteheadRussell p. 165. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.58 ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 19.8a ( 𝜑 → ∃ 𝑥 𝜑 )
2 nfv 𝑦 𝜑
3 2 sb8e ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
4 1 3 sylib ( 𝜑 → ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
5 4 pm4.71i ( 𝜑 ↔ ( 𝜑 ∧ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
6 19.42v ( ∃ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
7 5 6 bitr4i ( 𝜑 ↔ ∃ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) )
8 7 exbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) )