Metamath Proof Explorer


Theorem pm13.14

Description: Theorem *13.14 in WhiteheadRussell p. 178. (Contributed by Andrew Salmon, 3-Jun-2011)

Ref Expression
Assertion pm13.14 [˙A/x]˙φ¬φxA

Proof

Step Hyp Ref Expression
1 sbceq1a x=Aφ[˙A/x]˙φ
2 1 biimprcd [˙A/x]˙φx=Aφ
3 2 necon3bd [˙A/x]˙φ¬φxA
4 3 imp [˙A/x]˙φ¬φxA