Metamath Proof Explorer


Theorem pm14.122c

Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.122c AVxφx=Axφx=Axφ

Proof

Step Hyp Ref Expression
1 pm14.122a AVxφx=Axφx=A[˙A/x]˙φ
2 pm14.122b AVxφx=A[˙A/x]˙φxφx=Axφ
3 1 2 bitrd AVxφx=Axφx=Axφ