Metamath Proof Explorer


Theorem pm14.123c

Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.123c AVBWzwφz=Aw=Bzwφz=Aw=Bzwφ

Proof

Step Hyp Ref Expression
1 pm14.123a AVBWzwφz=Aw=Bzwφz=Aw=B[˙A/z]˙[˙B/w]˙φ
2 pm14.123b AVBWzwφz=Aw=B[˙A/z]˙[˙B/w]˙φzwφz=Aw=Bzwφ
3 1 2 bitrd AVBWzwφz=Aw=Bzwφz=Aw=Bzwφ