Metamath Proof Explorer


Theorem pm2.61da3ne

Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses pm2.61da3ne.1 φA=Bψ
pm2.61da3ne.2 φC=Dψ
pm2.61da3ne.3 φE=Fψ
pm2.61da3ne.4 φABCDEFψ
Assertion pm2.61da3ne φψ

Proof

Step Hyp Ref Expression
1 pm2.61da3ne.1 φA=Bψ
2 pm2.61da3ne.2 φC=Dψ
3 pm2.61da3ne.3 φE=Fψ
4 pm2.61da3ne.4 φABCDEFψ
5 1 a1d φA=BCDEFψ
6 4 3exp2 φABCDEFψ
7 6 imp4b φABCDEFψ
8 5 7 pm2.61dane φCDEFψ
9 8 imp φCDEFψ
10 2 3 9 pm2.61da2ne φψ