Metamath Proof Explorer


Theorem pm4.14

Description: Theorem *4.14 of WhiteheadRussell p. 117. Related to con34b . (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 23-Oct-2012)

Ref Expression
Assertion pm4.14 φψχφ¬χ¬ψ

Proof

Step Hyp Ref Expression
1 con34b ψχ¬χ¬ψ
2 1 imbi2i φψχφ¬χ¬ψ
3 impexp φψχφψχ
4 impexp φ¬χ¬ψφ¬χ¬ψ
5 2 3 4 3bitr4i φψχφ¬χ¬ψ