Metamath Proof Explorer


Theorem pm4.14

Description: Theorem *4.14 of WhiteheadRussell p. 117. Related to con34b . (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 23-Oct-2012)

Ref Expression
Assertion pm4.14 ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 con34b ( ( 𝜓𝜒 ) ↔ ( ¬ 𝜒 → ¬ 𝜓 ) )
2 1 imbi2i ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜓 ) ) )
3 impexp ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )
4 impexp ( ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ 𝜓 ) ↔ ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜓 ) ) )
5 2 3 4 3bitr4i ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ 𝜓 ) )