Metamath Proof Explorer


Theorem pm5.21nd

Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd . (Contributed by NM, 20-Nov-2005) (Proof shortened by Wolf Lammen, 4-Nov-2013)

Ref Expression
Hypotheses pm5.21nd.1 φ ψ θ
pm5.21nd.2 φ χ θ
pm5.21nd.3 θ ψ χ
Assertion pm5.21nd φ ψ χ

Proof

Step Hyp Ref Expression
1 pm5.21nd.1 φ ψ θ
2 pm5.21nd.2 φ χ θ
3 pm5.21nd.3 θ ψ χ
4 1 ex φ ψ θ
5 2 ex φ χ θ
6 3 a1i φ θ ψ χ
7 4 5 6 pm5.21ndd φ ψ χ