Metamath Proof Explorer


Theorem pm5.21nd

Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd . (Contributed by NM, 20-Nov-2005) (Proof shortened by Wolf Lammen, 4-Nov-2013)

Ref Expression
Hypotheses pm5.21nd.1 φψθ
pm5.21nd.2 φχθ
pm5.21nd.3 θψχ
Assertion pm5.21nd φψχ

Proof

Step Hyp Ref Expression
1 pm5.21nd.1 φψθ
2 pm5.21nd.2 φχθ
3 pm5.21nd.3 θψχ
4 1 ex φψθ
5 2 ex φχθ
6 3 a1i φθψχ
7 4 5 6 pm5.21ndd φψχ