Metamath Proof Explorer


Theorem pmfun

Description: A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion pmfun FA𝑝𝑚BFunF

Proof

Step Hyp Ref Expression
1 elpmi FA𝑝𝑚BF:domFAdomFB
2 ffun F:domFAFunF
3 2 adantr F:domFAdomFBFunF
4 1 3 syl FA𝑝𝑚BFunF