Metamath Proof Explorer


Theorem pmtrfmvdn0

Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T=pmTrspD
pmtrrn.r R=ranT
Assertion pmtrfmvdn0 FRdomFI

Proof

Step Hyp Ref Expression
1 pmtrrn.t T=pmTrspD
2 pmtrrn.r R=ranT
3 2on0 2𝑜
4 eqid domFI=domFI
5 1 2 4 pmtrfrn FRDVdomFIDdomFI2𝑜F=TdomFI
6 5 simpld FRDVdomFIDdomFI2𝑜
7 6 simp3d FRdomFI2𝑜
8 enen1 domFI2𝑜domFI2𝑜
9 7 8 syl FRdomFI2𝑜
10 en0 domFIdomFI=
11 en0 2𝑜2𝑜=
12 9 10 11 3bitr3g FRdomFI=2𝑜=
13 12 necon3bid FRdomFI2𝑜
14 3 13 mpbiri FRdomFI