Metamath Proof Explorer


Theorem pntrval

Description: Define the residual of the second Chebyshev function. The goal is to have R ( x ) e. o ( x ) , or R ( x ) / x ~>r 0 . (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Hypothesis pntrval.r R=a+ψaa
Assertion pntrval A+RA=ψAA

Proof

Step Hyp Ref Expression
1 pntrval.r R=a+ψaa
2 fveq2 a=Aψa=ψA
3 id a=Aa=A
4 2 3 oveq12d a=Aψaa=ψAA
5 ovex ψAAV
6 4 1 5 fvmpt A+RA=ψAA