Metamath Proof Explorer


Theorem poeq2

Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion poeq2 A=BRPoARPoB

Proof

Step Hyp Ref Expression
1 eqimss2 A=BBA
2 poss BARPoARPoB
3 1 2 syl A=BRPoARPoB
4 eqimss A=BAB
5 poss ABRPoBRPoA
6 4 5 syl A=BRPoBRPoA
7 3 6 impbid A=BRPoARPoB