Metamath Proof Explorer


Theorem poltletr

Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion poltletr RPoXAXBXCXARBBRICARC

Proof

Step Hyp Ref Expression
1 poleloe CXBRICBRCB=C
2 1 3ad2ant3 AXBXCXBRICBRCB=C
3 2 adantl RPoXAXBXCXBRICBRCB=C
4 3 anbi2d RPoXAXBXCXARBBRICARBBRCB=C
5 potr RPoXAXBXCXARBBRCARC
6 5 com12 ARBBRCRPoXAXBXCXARC
7 breq2 B=CARBARC
8 7 biimpac ARBB=CARC
9 8 a1d ARBB=CRPoXAXBXCXARC
10 6 9 jaodan ARBBRCB=CRPoXAXBXCXARC
11 10 com12 RPoXAXBXCXARBBRCB=CARC
12 4 11 sylbid RPoXAXBXCXARBBRICARC