Metamath Proof Explorer


Theorem somin1

Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion somin1 R Or X A X B X if A R B A B R I A

Proof

Step Hyp Ref Expression
1 iftrue A R B if A R B A B = A
2 1 olcd A R B if A R B A B R A if A R B A B = A
3 2 adantl R Or X A X B X A R B if A R B A B R A if A R B A B = A
4 sotric R Or X A X B X A R B ¬ A = B B R A
5 orcom A = B B R A B R A A = B
6 eqcom A = B B = A
7 6 orbi2i B R A A = B B R A B = A
8 5 7 bitri A = B B R A B R A B = A
9 8 notbii ¬ A = B B R A ¬ B R A B = A
10 4 9 bitrdi R Or X A X B X A R B ¬ B R A B = A
11 10 con2bid R Or X A X B X B R A B = A ¬ A R B
12 11 biimpar R Or X A X B X ¬ A R B B R A B = A
13 iffalse ¬ A R B if A R B A B = B
14 breq1 if A R B A B = B if A R B A B R A B R A
15 eqeq1 if A R B A B = B if A R B A B = A B = A
16 14 15 orbi12d if A R B A B = B if A R B A B R A if A R B A B = A B R A B = A
17 13 16 syl ¬ A R B if A R B A B R A if A R B A B = A B R A B = A
18 17 adantl R Or X A X B X ¬ A R B if A R B A B R A if A R B A B = A B R A B = A
19 12 18 mpbird R Or X A X B X ¬ A R B if A R B A B R A if A R B A B = A
20 3 19 pm2.61dan R Or X A X B X if A R B A B R A if A R B A B = A
21 poleloe A X if A R B A B R I A if A R B A B R A if A R B A B = A
22 21 ad2antrl R Or X A X B X if A R B A B R I A if A R B A B R A if A R B A B = A
23 20 22 mpbird R Or X A X B X if A R B A B R I A