Metamath Proof Explorer


Theorem somincom

Description: Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion somincom ROrXAXBXifARBAB=ifBRABA

Proof

Step Hyp Ref Expression
1 so2nr ROrXAXBX¬ARBBRA
2 nan ROrXAXBX¬ARBBRAROrXAXBXARB¬BRA
3 1 2 mpbi ROrXAXBXARB¬BRA
4 3 iffalsed ROrXAXBXARBifBRABA=A
5 4 eqcomd ROrXAXBXARBA=ifBRABA
6 sotric ROrXAXBXARB¬A=BBRA
7 6 con2bid ROrXAXBXA=BBRA¬ARB
8 ifeq2 A=BifBRABA=ifBRABB
9 ifid ifBRABB=B
10 8 9 eqtr2di A=BB=ifBRABA
11 iftrue BRAifBRABA=B
12 11 eqcomd BRAB=ifBRABA
13 10 12 jaoi A=BBRAB=ifBRABA
14 7 13 syl6bir ROrXAXBX¬ARBB=ifBRABA
15 14 imp ROrXAXBX¬ARBB=ifBRABA
16 5 15 ifeqda ROrXAXBXifARBAB=ifBRABA