Metamath Proof Explorer


Theorem postcofcl

Description: The post-composition functor as a curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses postcofval.q Q = C FuncCat D
postcofval.r R = D FuncCat E
postcofval.o No typesetting found for |- .o. = ( <. R , Q >. curryF ( <. C , D >. o.F E ) ) with typecode |-
postcofval.f φ F D Func E
postcofval.c φ C Cat
postcofval.k No typesetting found for |- K = ( ( 1st ` .o. ) ` F ) with typecode |-
postcofcl.s S = C FuncCat E
Assertion postcofcl φ K Q Func S

Proof

Step Hyp Ref Expression
1 postcofval.q Q = C FuncCat D
2 postcofval.r R = D FuncCat E
3 postcofval.o Could not format .o. = ( <. R , Q >. curryF ( <. C , D >. o.F E ) ) : No typesetting found for |- .o. = ( <. R , Q >. curryF ( <. C , D >. o.F E ) ) with typecode |-
4 postcofval.f φ F D Func E
5 postcofval.c φ C Cat
6 postcofval.k Could not format K = ( ( 1st ` .o. ) ` F ) : No typesetting found for |- K = ( ( 1st ` .o. ) ` F ) with typecode |-
7 postcofcl.s S = C FuncCat E
8 2 fucbas D Func E = Base R
9 relfunc Rel D Func E
10 1st2ndbr Rel D Func E F D Func E 1 st F D Func E 2 nd F
11 9 4 10 sylancr φ 1 st F D Func E 2 nd F
12 11 funcrcl2 φ D Cat
13 11 funcrcl3 φ E Cat
14 2 12 13 fuccat φ R Cat
15 1 5 12 fuccat φ Q Cat
16 2 1 oveq12i R × c Q = D FuncCat E × c C FuncCat D
17 16 7 5 12 13 fucofunca Could not format ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func S ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func S ) ) with typecode |-
18 eqid Base Q = Base Q
19 3 8 14 15 17 18 4 6 curf1cl φ K Q Func S