Metamath Proof Explorer


Theorem postcofcl

Description: The post-composition functor as a curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses postcofval.q
|- Q = ( C FuncCat D )
postcofval.r
|- R = ( D FuncCat E )
postcofval.o
|- .o. = ( <. R , Q >. curryF ( <. C , D >. o.F E ) )
postcofval.f
|- ( ph -> F e. ( D Func E ) )
postcofval.c
|- ( ph -> C e. Cat )
postcofval.k
|- K = ( ( 1st ` .o. ) ` F )
postcofcl.s
|- S = ( C FuncCat E )
Assertion postcofcl
|- ( ph -> K e. ( Q Func S ) )

Proof

Step Hyp Ref Expression
1 postcofval.q
 |-  Q = ( C FuncCat D )
2 postcofval.r
 |-  R = ( D FuncCat E )
3 postcofval.o
 |-  .o. = ( <. R , Q >. curryF ( <. C , D >. o.F E ) )
4 postcofval.f
 |-  ( ph -> F e. ( D Func E ) )
5 postcofval.c
 |-  ( ph -> C e. Cat )
6 postcofval.k
 |-  K = ( ( 1st ` .o. ) ` F )
7 postcofcl.s
 |-  S = ( C FuncCat E )
8 2 fucbas
 |-  ( D Func E ) = ( Base ` R )
9 relfunc
 |-  Rel ( D Func E )
10 1st2ndbr
 |-  ( ( Rel ( D Func E ) /\ F e. ( D Func E ) ) -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) )
11 9 4 10 sylancr
 |-  ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) )
12 11 funcrcl2
 |-  ( ph -> D e. Cat )
13 11 funcrcl3
 |-  ( ph -> E e. Cat )
14 2 12 13 fuccat
 |-  ( ph -> R e. Cat )
15 1 5 12 fuccat
 |-  ( ph -> Q e. Cat )
16 2 1 oveq12i
 |-  ( R Xc. Q ) = ( ( D FuncCat E ) Xc. ( C FuncCat D ) )
17 16 7 5 12 13 fucofunca
 |-  ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func S ) )
18 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
19 3 8 14 15 17 18 4 6 curf1cl
 |-  ( ph -> K e. ( Q Func S ) )