| Step |
Hyp |
Ref |
Expression |
| 1 |
|
postcofval.q |
|- Q = ( C FuncCat D ) |
| 2 |
|
postcofval.r |
|- R = ( D FuncCat E ) |
| 3 |
|
postcofval.o |
|- .o. = ( <. R , Q >. curryF ( <. C , D >. o.F E ) ) |
| 4 |
|
postcofval.f |
|- ( ph -> F e. ( D Func E ) ) |
| 5 |
|
postcofval.c |
|- ( ph -> C e. Cat ) |
| 6 |
|
postcofval.k |
|- K = ( ( 1st ` .o. ) ` F ) |
| 7 |
|
postcofcl.s |
|- S = ( C FuncCat E ) |
| 8 |
2
|
fucbas |
|- ( D Func E ) = ( Base ` R ) |
| 9 |
|
relfunc |
|- Rel ( D Func E ) |
| 10 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ F e. ( D Func E ) ) -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 11 |
9 4 10
|
sylancr |
|- ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 12 |
11
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 13 |
11
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 14 |
2 12 13
|
fuccat |
|- ( ph -> R e. Cat ) |
| 15 |
1 5 12
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 16 |
2 1
|
oveq12i |
|- ( R Xc. Q ) = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
| 17 |
16 7 5 12 13
|
fucofunca |
|- ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func S ) ) |
| 18 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 19 |
3 8 14 15 17 18 4 6
|
curf1cl |
|- ( ph -> K e. ( Q Func S ) ) |