Metamath Proof Explorer


Theorem postr

Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011)

Ref Expression
Hypotheses posi.b B=BaseK
posi.l ˙=K
Assertion postr KPosetXBYBZBX˙YY˙ZX˙Z

Proof

Step Hyp Ref Expression
1 posi.b B=BaseK
2 posi.l ˙=K
3 1 2 posi KPosetXBYBZBX˙XX˙YY˙XX=YX˙YY˙ZX˙Z
4 3 simp3d KPosetXBYBZBX˙YY˙ZX˙Z