Metamath Proof Explorer


Theorem ppi1i

Description: Inference form of ppiprm . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Hypotheses ppi1i.m M0
ppi1i.n N=M+1
ppi1i.p π_M=K
ppi1i.1 N
Assertion ppi1i π_N=K+1

Proof

Step Hyp Ref Expression
1 ppi1i.m M0
2 ppi1i.n N=M+1
3 ppi1i.p π_M=K
4 ppi1i.1 N
5 2 fveq2i π_N=π_M+1
6 1 nn0zi M
7 2 4 eqeltrri M+1
8 ppiprm MM+1π_M+1=π_M+1
9 6 7 8 mp2an π_M+1=π_M+1
10 3 oveq1i π_M+1=K+1
11 5 9 10 3eqtri π_N=K+1