Description: Inference form of ppiprm . (Contributed by Mario Carneiro, 21-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ppi1i.m | ⊢ 𝑀 ∈ ℕ0 | |
| ppi1i.n | ⊢ 𝑁 = ( 𝑀 + 1 ) | ||
| ppi1i.p | ⊢ ( π ‘ 𝑀 ) = 𝐾 | ||
| ppi1i.1 | ⊢ 𝑁 ∈ ℙ | ||
| Assertion | ppi1i | ⊢ ( π ‘ 𝑁 ) = ( 𝐾 + 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppi1i.m | ⊢ 𝑀 ∈ ℕ0 | |
| 2 | ppi1i.n | ⊢ 𝑁 = ( 𝑀 + 1 ) | |
| 3 | ppi1i.p | ⊢ ( π ‘ 𝑀 ) = 𝐾 | |
| 4 | ppi1i.1 | ⊢ 𝑁 ∈ ℙ | |
| 5 | 2 | fveq2i | ⊢ ( π ‘ 𝑁 ) = ( π ‘ ( 𝑀 + 1 ) ) |
| 6 | 1 | nn0zi | ⊢ 𝑀 ∈ ℤ |
| 7 | 2 4 | eqeltrri | ⊢ ( 𝑀 + 1 ) ∈ ℙ |
| 8 | ppiprm | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝑀 + 1 ) ) = ( ( π ‘ 𝑀 ) + 1 ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( π ‘ ( 𝑀 + 1 ) ) = ( ( π ‘ 𝑀 ) + 1 ) |
| 10 | 3 | oveq1i | ⊢ ( ( π ‘ 𝑀 ) + 1 ) = ( 𝐾 + 1 ) |
| 11 | 5 9 10 | 3eqtri | ⊢ ( π ‘ 𝑁 ) = ( 𝐾 + 1 ) |