Metamath Proof Explorer


Theorem ppi1i

Description: Inference form of ppiprm . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Hypotheses ppi1i.m 𝑀 ∈ ℕ0
ppi1i.n 𝑁 = ( 𝑀 + 1 )
ppi1i.p ( π𝑀 ) = 𝐾
ppi1i.1 𝑁 ∈ ℙ
Assertion ppi1i ( π𝑁 ) = ( 𝐾 + 1 )

Proof

Step Hyp Ref Expression
1 ppi1i.m 𝑀 ∈ ℕ0
2 ppi1i.n 𝑁 = ( 𝑀 + 1 )
3 ppi1i.p ( π𝑀 ) = 𝐾
4 ppi1i.1 𝑁 ∈ ℙ
5 2 fveq2i ( π𝑁 ) = ( π ‘ ( 𝑀 + 1 ) )
6 1 nn0zi 𝑀 ∈ ℤ
7 2 4 eqeltrri ( 𝑀 + 1 ) ∈ ℙ
8 ppiprm ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝑀 + 1 ) ) = ( ( π𝑀 ) + 1 ) )
9 6 7 8 mp2an ( π ‘ ( 𝑀 + 1 ) ) = ( ( π𝑀 ) + 1 )
10 3 oveq1i ( ( π𝑀 ) + 1 ) = ( 𝐾 + 1 )
11 5 9 10 3eqtri ( π𝑁 ) = ( 𝐾 + 1 )