Description: Inference form of ppiprm . (Contributed by Mario Carneiro, 21-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ppi1i.m | |- M e. NN0 |
|
| ppi1i.n | |- N = ( M + 1 ) |
||
| ppi1i.p | |- ( ppi ` M ) = K |
||
| ppi1i.1 | |- N e. Prime |
||
| Assertion | ppi1i | |- ( ppi ` N ) = ( K + 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppi1i.m | |- M e. NN0 |
|
| 2 | ppi1i.n | |- N = ( M + 1 ) |
|
| 3 | ppi1i.p | |- ( ppi ` M ) = K |
|
| 4 | ppi1i.1 | |- N e. Prime |
|
| 5 | 2 | fveq2i | |- ( ppi ` N ) = ( ppi ` ( M + 1 ) ) |
| 6 | 1 | nn0zi | |- M e. ZZ |
| 7 | 2 4 | eqeltrri | |- ( M + 1 ) e. Prime |
| 8 | ppiprm | |- ( ( M e. ZZ /\ ( M + 1 ) e. Prime ) -> ( ppi ` ( M + 1 ) ) = ( ( ppi ` M ) + 1 ) ) |
|
| 9 | 6 7 8 | mp2an | |- ( ppi ` ( M + 1 ) ) = ( ( ppi ` M ) + 1 ) |
| 10 | 3 | oveq1i | |- ( ( ppi ` M ) + 1 ) = ( K + 1 ) |
| 11 | 5 9 10 | 3eqtri | |- ( ppi ` N ) = ( K + 1 ) |