Metamath Proof Explorer


Theorem pr1eqbg

Description: A (proper) pair is equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Assertion pr1eqbg AUBVCXABA=CAB=BC

Proof

Step Hyp Ref Expression
1 eqid B=B
2 1 biantru A=CA=CB=B
3 2 orbi2i A=BB=CA=CA=BB=CA=CB=B
4 3 a1i AUBVCXABA=BB=CA=CA=BB=CA=CB=B
5 neneq AB¬A=B
6 5 adantl AUBVCXAB¬A=B
7 6 intnanrd AUBVCXAB¬A=BB=C
8 biorf ¬A=BB=CA=CA=BB=CA=C
9 7 8 syl AUBVCXABA=CA=BB=CA=C
10 3simpa AUBVCXAUBV
11 3simpc AUBVCXBVCX
12 10 11 jca AUBVCXAUBVBVCX
13 12 adantr AUBVCXABAUBVBVCX
14 preq12bg AUBVBVCXAB=BCA=BB=CA=CB=B
15 13 14 syl AUBVCXABAB=BCA=BB=CA=CB=B
16 4 9 15 3bitr4d AUBVCXABA=CAB=BC