Metamath Proof Explorer


Theorem prcof2

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof2a.n N = D Nat E
prcof2a.k φ K D Func E
prcof2a.l φ L D Func E
prcof2.p No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F <. F , G >. ) ) = P ) with typecode |-
prcof2.r Rel R
prcof2.f φ F R G
Assertion prcof2 φ K P L = a K N L a F

Proof

Step Hyp Ref Expression
1 prcof2a.n N = D Nat E
2 prcof2a.k φ K D Func E
3 prcof2a.l φ L D Func E
4 prcof2.p Could not format ( ph -> ( 2nd ` ( <. D , E >. -o.F <. F , G >. ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F <. F , G >. ) ) = P ) with typecode |-
5 prcof2.r Rel R
6 prcof2.f φ F R G
7 eqid D Func E = D Func E
8 2 func1st2nd φ 1 st K D Func E 2 nd K
9 8 funcrcl2 φ D Cat
10 8 funcrcl3 φ E Cat
11 7 1 9 10 5 6 prcofval Could not format ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) with typecode |-
12 11 fveq2d Could not format ( ph -> ( 2nd ` ( <. D , E >. -o.F <. F , G >. ) ) = ( 2nd ` <. ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F <. F , G >. ) ) = ( 2nd ` <. ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) ) with typecode |-
13 ovex D Func E V
14 13 mptex k D Func E k func F G V
15 13 13 mpoex k D Func E , l D Func E a k N l a F V
16 14 15 op2nd 2 nd k D Func E k func F G k D Func E , l D Func E a k N l a F = k D Func E , l D Func E a k N l a F
17 12 16 eqtrdi Could not format ( ph -> ( 2nd ` ( <. D , E >. -o.F <. F , G >. ) ) = ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F <. F , G >. ) ) = ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) ) with typecode |-
18 4 17 eqtr3d φ P = k D Func E , l D Func E a k N l a F
19 simprl φ k = K l = L k = K
20 simprr φ k = K l = L l = L
21 19 20 oveq12d φ k = K l = L k N l = K N L
22 21 mpteq1d φ k = K l = L a k N l a F = a K N L a F
23 ovex K N L V
24 23 mptex a K N L a F V
25 24 a1i φ a K N L a F V
26 18 22 2 3 25 ovmpod φ K P L = a K N L a F