Metamath Proof Explorer


Theorem prcoffunca

Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r R = D FuncCat E
prcoffunc.e φ E Cat
prcoffunc.s S = C FuncCat E
prcoffunca.f φ F C Func D
Assertion prcoffunca Could not format assertion : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 prcoffunc.r R = D FuncCat E
2 prcoffunc.e φ E Cat
3 prcoffunc.s S = C FuncCat E
4 prcoffunca.f φ F C Func D
5 eqid C FuncCat D = C FuncCat D
6 eqidd Could not format ( ph -> ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) = ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) : No typesetting found for |- ( ph -> ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) = ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) with typecode |-
7 eqidd Could not format ( ph -> ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) ) with typecode |-
8 1 2 5 6 7 4 prcoftposcurfucoa Could not format ( ph -> ( <. D , E >. -o.F F ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) ) with typecode |-
9 5 1 6 4 2 8 3 precofcl Could not format ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) ) with typecode |-