Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Replacement
Theorems requiring subset and intersection existence
prcssprc
Next ⟩
sselpwd
Metamath Proof Explorer
Ascii
Unicode
Theorem
prcssprc
Description:
The superclass of a proper class is a proper class.
(Contributed by
AV
, 27-Dec-2020)
Ref
Expression
Assertion
prcssprc
⊢
A
⊆
B
∧
A
∉
V
→
B
∉
V
Proof
Step
Hyp
Ref
Expression
1
ssexg
⊢
A
⊆
B
∧
B
∈
V
→
A
∈
V
2
1
ex
⊢
A
⊆
B
→
B
∈
V
→
A
∈
V
3
2
nelcon3d
⊢
A
⊆
B
→
A
∉
V
→
B
∉
V
4
3
imp
⊢
A
⊆
B
∧
A
∉
V
→
B
∉
V