Metamath Proof Explorer


Theorem prdsbasex

Description: Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015)

Ref Expression
Hypothesis prdsbasex.b B=xdomRBaseRx
Assertion prdsbasex BV

Proof

Step Hyp Ref Expression
1 prdsbasex.b B=xdomRBaseRx
2 ixpexg xdomRBaseRxVxdomRBaseRxV
3 fvexd xdomRBaseRxV
4 2 3 mprg xdomRBaseRxV
5 1 4 eqeltri BV