Description: Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prdsbasex.b | ⊢ 𝐵 = X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | |
Assertion | prdsbasex | ⊢ 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasex.b | ⊢ 𝐵 = X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | |
2 | ixpexg | ⊢ ( ∀ 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V → X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V ) | |
3 | fvexd | ⊢ ( 𝑥 ∈ dom 𝑅 → ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V ) | |
4 | 2 3 | mprg | ⊢ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V |
5 | 1 4 | eqeltri | ⊢ 𝐵 ∈ V |