Metamath Proof Explorer


Theorem prdsbasex

Description: Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015)

Ref Expression
Hypothesis prdsbasex.b 𝐵 = X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅𝑥 ) )
Assertion prdsbasex 𝐵 ∈ V

Proof

Step Hyp Ref Expression
1 prdsbasex.b 𝐵 = X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅𝑥 ) )
2 ixpexg ( ∀ 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅𝑥 ) ) ∈ V → X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅𝑥 ) ) ∈ V )
3 fvexd ( 𝑥 ∈ dom 𝑅 → ( Base ‘ ( 𝑅𝑥 ) ) ∈ V )
4 2 3 mprg X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅𝑥 ) ) ∈ V
5 1 4 eqeltri 𝐵 ∈ V